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ABSTRACT
In this paper, we are interested in estimating the angle of arrival

(AoA) of all the signal paths arriving at a receiver array using

only the corresponding received signal magnitude measurements

(or, equivalently, the received power measurements). Typical AoA

estimation techniques require phase information, which is not avail-

able in some WiFi/Bluetooth receivers, and is further challenging

to properly measure in a synthetic antenna array due to synchro-

nization issues. In this paper, we then show that AoA estimation is
possible with only the received signal magnitude measurements. More

specifically, we first propose a framework, based on the spatial cor-

relation of the received signal magnitude, to estimate the AoA of

signal paths from fixed signal sources (both active transmitters and

passive objects). Next, we extend our AoA estimation framework

to a dual setting, and further utilize a particle filter, to show how a

moving target (both active transmitters and passive robots/humans)

can be tracked, based on only the received signal magnitude mea-

surements of a small number of fixed receivers. We extensively

validate our proposed framework with several experiments (total

of 22), in both closed and open areas. More specifically, we first

utilize a robot to emulate an antenna array, and estimate the AoA

of active transmitters, as well as passive objects using only the re-

ceived WiFi signal magnitude measurements. We next validate our

tracking framework by using only three off-the-shelf WiFi devices

as receivers, to track an active transmitter, a passive robot that

writes the letters of IPSN on its path, and a walking human. Overall,

our results show that AoA can be estimated, with a high accuracy,

with only the received signal magnitude measurements, and can be

utilized for high quality angular localization and tracking.
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1 INTRODUCTION
In recent years, there has been an increasing interest in using Radio

Frequency (RF) signals to obtain information about our surround-

ings. Imaging, localization, tracking, occupancy estimation, and

human activity recognition are some of the many RF sensing appli-

cations [3, 5–9, 14, 19, 30]. Localization and tracking, in particular,

are crucial techniques that can be useful in many scenarios such

as emergency response, radio navigation, security, surveillance,

and smart homes. Angle of Arrival (AoA) estimation, on the other

hand, is an important problem that can be used towards localization

and tracking. However, most AoA estimation approaches require

synchronized phase information, which can not be obtained on a

synthesized array of off-the-shelf RF transceivers.

In this paper, we show how to estimate the AoA of the signal

paths arriving at a receiver array, only from the received signal

magnitude measurements (or, equivalently, the received power

measurements). We then propose a unified framework for angular

localization of fixed passive/active objects, as well as tracking of

passive/active targets, using our magnitude-only AoA estimation

foundation.

AoA estimation is a classical problem that has gained a consider-

able attention in the field of array signal processing. Many solutions

have been proposed in the literature, including traditional beam-

forming [28], MUSIC [24], and ESPRIT [23]. All of these techniques

assume that the received signal phase measurements are available

and synchronized across the elements of ameasurement array. How-

ever, many of the commercial off-the-shelf (COTS) wireless devices

do not provide stable absolute phasemeasurements [33], making the

synthesis of a long array not possible due to synchronization issues.

There have been attempts to stabilize the phase measurements in

COTS devices (e.g., Intel 5300WLAN card), but these approaches do

not result in synchronized phase measurements required for array

signal processing [33]. Few works have investigated the problem of

AoA estimation using only the signal power (or equivalently, mag-

nitude) measurements at the array elements. For instance, in [18],

mechanical steering of a directional antenna is utilized, whereas in

[21], special type of antennas that have multiple radiation patterns

are used. Such work, however, require custom-made hardware. As

for array processing techniques using magnitude-only measure-

ments, [15] proposes a sparsity-based optimization problem which

assumes the knowledge of the number of sources, and [26] pro-

poses an algorithm that can only find a function of the differences

between the AoAs, but not the AoAs themselves. Furthermore, the

https://doi.org/10.475/123_4
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aforementioned papers are only validated in a simulation environ-

ment, and with only active transmitters. In this paper, we propose

and experimentally validate a framework for estimating the AoAs

of active transmitters as well as passive objects, using only the

received signal magnitude.

We then adapt and extend our proposed AoA estimation frame-

work for tracking a passive/active moving target, using only a small

number of receivers. Target tracking has been of interest to the

research community in the past few years. Some existing tracking

work relies on signals with a large bandwidth [4], while others rely

on the availability of a stable absolute phase measurement by using

a software defined radio to track [32], or to estimate the direction of

motion [1]. However, large bandwidths or stable absolute phase in-

formation are not available in COTS devices. There are a number of

works that have demonstrated tracking using COTS devices, albeit

with a different approach than ours. However, most of these require

several transceivers, and/or require extensive prior calibration ex-

periments in the same environment, and/or are computationally

very expensive. For instance, [31] depends on fingerprinting the

target location and comparing the actual tracking data to the fin-

gerprint database, which requires extensive prior calibration and

training. In [3], the target is tracked using the RSSI measurements,

and a link crossing model, but it requires a dense sensor deploy-

ment all around the area (e.g., 30 transceivers). While the number

of sensors is reduced in [17, 22], they still require 6 links and a

very high computational complexity. [29], on the other hand, needs

extensive prior measurements in the same area.

Contribution Statements: In this paper, we propose a unified

framework that can be used towards angular localization of fixed

active or passive objects, as well as tracking of a moving active

or passive target, using only the magnitude of the received signal

at a small number of receivers. Our framework has a very small

computation time, does not require any prior calibration in the

same environment, and has a good tracking and localization quality.

More specifically,

• We propose an approach to estimate the AoA of signal paths

arriving at a receiver array using only the magnitude of the cor-

responding received measurements. Our approach shows that

the auto-correlation function (and therefore the power spectrum)

of the received signal magnitude at the receiver array carries vital

information on the AoA, an analysis which will then be the foun-

dation for our proposed methodologies throughout the paper.

For instance, we propose a framework for the case of angular lo-

calization of fixed active transmitters or passive objects/humans,

based on this foundation.

• We extend our proposed AoA estimation framework to a dual

setting for tracking a moving target. Our proposed framework

utilizes only the magnitude of the received signal at a small num-

ber of receivers, and further utilizes particle filters and motion

dynamics. Our approach can track active transmitting targets as

well as passive moving objects or humans.

• We validate both our angular localization framework and track-

ing approach with extensive experiments (total of 22) in various

closed and open areas and show that our approach can achieve

high-quality localization and tracking. More specifically, we first

utilize a robot to emulate an antenna array and estimate the AoA

of active transmitters and passive objects, using onlyWiFi magni-

tude measurements. Our angular localization has an overall Mean

Absolute Error (MAE) of 2.44◦, and only takes an average of 0.45

seconds to localize up to four sources/objects. We next validate

our tracking framework by using only three off-the-shelf WiFi

devices as receivers, and track an active transmitter, a passive

robot that writes the letters of IPSN on its path, and a walking

passive human. Our tracking approach can achieve an MAE of

20 cm for active targets and 26.75 cm for passive ones, and only

takes an average of 1.05 seconds to run per 1 m of tracking length.

Overall, our results show that AoA can be estimated, with a high

accuracy, with only the received signal magnitude measurements,

and can be used for efficient angular localization and tracking.

We note that if phase can be more reliably synchronized in a syn-

thesized array of COTS receivers in future, then our approach can

provide an additional sensing mechanism for AoA estimation, and

can thus result in a considerably better overall estimation quality

using both magnitude and phase. The rest of this paper is orga-

nized as follows. In Sec. 2, we show our problem formulation for

a general setting of signal paths arriving at an array. In Sec. 3, we

propose a framework for AoA estimation of signals arriving from

fixed sources, and the corresponding angular localization of objects,

and show its performance through extensive experiments. In Sec.

4, we adapt our framework to track a moving target. We experi-

mentally validate our proposed approach for tracking active and

passive moving targets, including humans and robots. Finally, we

present a discussion on the limitations and future extensions of our

proposed approach in Sec. 5, and conclude in Sec. 6.

2 OUR AOA ESTIMATION FOUNDATION
Consider N signal paths arriving at a linear receiver array at var-

ious angles, as shown in Fig. 1. These signal paths can be caused

by active transmitting sources or by passive objects that got illumi-

nated through a transmission in the area. We are then interested

in estimating the AoA of these paths, corresponding to all the N
sources/objects, using only the magnitude of the received signal

at each antenna of the receiver array.
1
Note that for the case of

passive objects, AoA estimation results in the angular localization

of the objects. In this section, we show that the magnitude of the

received signal at the array contains information about the AoA

of all the signal paths. This foundation will then be the base for

our proposed framework of Sec. 3 to estimate the AoA of all the

sources, as well as for our proposed tracking approach of Sec. 4.

Consider the receiver array of Fig. 1. Let d denote the distance

from the first antenna, as denoted on the figure. The baseband

received signal, due to the N arriving paths, can be written as a

function of distance d as follows [13],

c(d) =
N∑
n=1

αne
j(µn− 2π

λ d cos(ϕn )) + η(d), (1)

where αn is the amplitude of thenth signal path, λ is the wavelength

of the signal,ϕn is the AoA of thenth path (measured with respect to

the x-axis), µn is the phase of thenth signal at the first antenna of the

1
We use the term "source" for both active transmitters and passive objects in this paper.
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Figure 1: N Signal paths arriving at a receiver array.

array, and η(d) is the receiver noise. Let Acorr(∆) denote the auto-
correlation function of the baseband received signal magnitude,

|c(d)|, at lag ∆.

Lemma 2.1. Acorr(∆) can be written as follows [13],

Acorr(∆) = CA +Cσηδ (∆)

+

N−1∑
n=1

N∑
m=n+1

Cm,n cos

(
2π

∆

λ
(ψn −ψm )

)
,

(2)

where CA is a constant that depends on the total signal power, Cση is
a constant that depends on the noise variance σ 2η and the signal power,

Cm,n =
πα 2

mα 2

n
16P , ψn = cos(ϕn ), P =

∑N
n=1 α

2

n is the total power of
the received signal, and δ (.) is the Dirac Delta function.

Proof. See Appendix A. �

Then, by taking the Fourier transform of Acorr(∆), we get,
A(f ) = CAδ (f ) + Cση

+

N−1∑
n=1

N∑
m=n+1

Cm,n

2

(
δ [f − ψn −ψm

λ
] + δ [f + ψn −ψm

λ
]
)
.

(3)

Eq. 3 shows that |A(f )| has peaks at the frequencies ±(|ψn −
ψm |)/λ, for 1 ≤ n < m ≤ N .

2
For the sake of simplicity, we nor-

malize the frequency with respect to
1

λ , so that the peaks in the

spectrum occur at ±|ψn −ψm |, 1 ≤ n < m ≤ N . It can be seen from

Eq. 3 that the locations of the peaks of |A(f )| contain information

about the AoA of the N signal paths. In the next section, we then

propose a framework to use this information and estimate all the

AoAs.

3 AOA ESTIMATION FOR FIXED
SOURCES/OBJECTS

In this section, we consider the scenario where there are unknown

fixed active or passive signal sources located in an area. We are

then interested in estimating the AoAs of the signals from these

sources at the receiver array, thus localizing the direction of these

sources/objects, using only the magnitude of the corresponding

received signal measurements. The signal measurements can be

2
Note that the Fourier transform of |c(d ) |2 also has a similar frequency content.

However, the spectrum of |c(d ) |2 is considerably more noisy, as compared to A(f ),
since the effect of noise is minimized in the auto-correlation, due to the uncorrelated

nature of the noise.

obtained by using an array of fixed antennas, or by using an un-

manned vehicle that utilizes its motion to collect measurements

along a route, thus synthesizing an antenna array. We next propose

a framework to estimate the AoAs of signals from fixed sources.

We present extensive experimental results for estimating the AoAs

for both active and passive cases.

3.1 AoA Estimation Methodology
Consider N signal sources present on one side of a receiver array,

i.e., sources whose AoAs {ϕn , 1 ≤ n ≤ N } satisfy 0
◦ ≤ ϕn <

180
◦
(see Fig. 1). Let Ψ = {ψ1,ψ2, . . . ,ψN }, where ψn = cos(ϕn ).

Define the function D(U ) on a set of real numbers U as the set

of all the unique pairwise distances between the elements of U ,

i.e. D(U ) = {|ui − uj | : ui ,uj ∈ U , i , j}. Let Q be the set of the

absolute values of the pairwise differences of the cosines of AoAs,

i.e. Q = D(Ψ). Without loss of generality, we assume that Q is

ordered: Q = {q1,q2, . . . ,qM },q1 > q2 > · · · > qM . We are then

interested in estimating Ψ, and hence the AoAs, using the set of

pairwise distances Q , obtained using Eq. 3.

The problem of estimating a set of N real numbers, B, given the

multiset of absolute differences (distances) between every pair of

numbers, ∆B, is called the Turnpike problem [16]. This problem has

been explored extensively in the literature and solvers have been

proposed for finding its solution [16]. However, it is not possible

to obtain a unique solution set using just the set ∆B. For instance,
for a solution B, the sets obtained through translation B + {e} =
{b + e : b ∈ B}, mirroring −B = {−b : b ∈ B}, or a combination of

both −B + {e}, would also result in the same set of distances ∆B,
for any constant e . Furthermore, when the number of points N ≥ 6,

there exist other possible solutions that do not arise from the above

construction [16].

The existing solvers for the Turnpike problem require that the

set of distances should contain all the

(N
2

)
pairwise distances (or

that we know the multiplicity of the non-distinct distances, if any),

and they suffer from the translation and mirroring ambiguities as

well as other ambiguities. In our AoA estimation problem though,

we will not know the multiplicity of the possible non-distinct dis-

tances. Furthermore, we also have to resolve the aforementioned

translation and mirroring ambiguity. Thus, we cannot utilize the

solvers proposed for the Turnpike problem in our setting. Therefore,

in this section we propose our approach to estimate the AoAs from

the pairwise cosine distances.

In order to overcome the ambiguity arising due to the translation

and mirroring of Ψ, we can place a reference signal source (i.e., a

transmitter) at one extreme of the span of angles, say ϕ
ref
= 0
◦
, so

that ψ
ref
= 1. This also implies that any valid solution set would

only containψ s that are less than or equal toψ
ref
, a condition we

then utilize in our proposed methodology. However, there still exist

multiple solutions for a set Q .
We next describe our proposed algorithm to first find all the

valid sets of solutions {ψn : 1 ≤ n ≤ N }, for a given distance set Q .

Then, we show how we can reduce the number of valid solutions

(and possibly obtain a unique solution) by utilizing measurements

from two arrays in different configurations.

3.1.1 Proposed Approach for Finding All Possible Angle Solu-
tions. We next describe how we can obtain all the valid solution
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Figure 2: Illustration of the reference point, the positioning
of the first point corresponding to q1, and the two possible
valid position choices forψ2, in our proposed approach.

sets corresponding to Ψ, given the ordered set of distances Q , the
AoA corresponding to the reference source at ϕ

ref
= 0
◦
, and the

estimated number of sources (denoted by N̂ ). We show how to esti-

mate the number of sources in Sec. 3.1.2. Without loss of generality,

we take the sets Ψ and Q to include the impact of the new added

reference source at ϕ
ref
, i.e., Ψ = {ψ

ref
,ψ1, . . . ,ψN−1}. Then, we

are interested in estimating the angles of the rest N − 1 unknown
sources.

The rightmost and leftmost extreme points of the set Ψ are de-

fined by ψ
ref
= 1 and ψ1 = ψ

ref
− q1, respectively, as shown in

Fig. 2. Consider the positioning of the next pointψ2, corresponding
to q2. Fig. 2 shows the two possible valid position choices for it.

Both these will result in a valid solution set. Similarly, for each

of the remaining distances qi , 3 ≤ i ≤ M , there exist a pair of

positions on the line in Fig. 2, whose distance to the two extreme

points correspond to that qi . It is easy to confirm that these two

positions are the only possible positions given the monotonicity of

the set Q . This observation is the base of our proposed approach,

which we detail next. Let the set
ˆS denote the set of all the sets of

valid solutions. We start with a valid partial solution, where a Valid

Partial Solution (VPS) is a set S such that D(S) ⊆ Q . We then find

all the valid solutions, as follows:

Initialization: We initialize the set of VPSs with S(1) = {{ψ
ref
−

q1,ψref}}, which is the smallest VPS, containing only the two ex-

treme points of Ψ.
Iteration Update: In iteration i , we place a point at a distance qi

from either of the extremes in the existing VPSs. More specifically,

for each set S ∈ S(i−1), we generate one test set by adding a point

at a distance qi from the rightmost extreme, and another test set

by adding a point at a distance qi from the leftmost extreme. If the

pairwise distances of the new sets are a subset of Q , we then add

these test sets to S(i−1) to generate S(i).
Algorithm Termination: The algorithm is terminated afterM − 1

iterations, which corresponds to exhausting all the elements of Q .

A set S ∈ S(M ) is a possible solution for Ψ if the cardinality of S is

N̂ and D(S) = Q . We then use all such sets S to generate
ˆS, the final

set of all the possible solutions. Algorithm 1 shows the pseudo-code

for this algorithm.

Remark 1. It can be easily confirmed that the aforementioned
algorithm captures all the possible valid solution sets, even when there
are distance multiplicities.

Remark 2. Note that ϕref does not have to be necessarily 0
◦. As

long as it is the smallest possible angle (i.e., all the other angles are
greater than it), then the previous algorithm works.

While we have removed the ambiguity due to translation and

mirroring, the previous algorithm can still result in a number of

valid solutions. If there is no distance multiplicity, then we can

prove that there will only be two solutions by using ψ
ref
, when

the number of unknown sources is less than 5 (see the Turnpike

literature [16]). In general, however, there may be more than two

possible solution sets. Next, we show how we can further reduce

the number of possible solutions.

Algorithm 1 Finding all possible angle solutions

function findAllPossibleAngles(Q, ψ
ref
, N̂ )

1: Initialize S(1) ← {ψ
ref
− q1,ψref}

2: for all 2 ≤ i ≤ M do
3: S(i) ← S(i−1)
4: for all sets S ∈ S(i−1) do
5: S test

1
← S ∪ {ψ

ref
− qi }, and S test

2
← S ∪ {ψ

ref
− q1 + qi }

6: for all k ∈ {1, 2} do
7: if D(S testk ) ⊆ Q then
8: S(i) ← S(i) ∪ S testk
9: end if
10: end for
11: end for
12: end for
13:

ˆS ← {S : S ∈ S(M ), cardinality(S) = N̂ ,D(S) = Q}
return Φ̂

all
= cos

−1 ˆS

3.1.2 AoA Estimation with Multiple Routes. In order to reduce

the ambiguity due to multiple possible solutions obtained using Al-

gorithm 1, we propose to use another set of measurements collected

by a receiver array with a different orientation. This new magni-

tude measurement can be obtained either by another fixed receiver

array or by an unmanned vehicle that moves along a route with a

different orientation. This solution is thus particularly suitable for

the case of an unmanned vehicle emulating a receiver array, since

traversing two straight routes is a trivial task for an unmanned

vehicle. Fig. 3 shows an example of this scenario. Suppose that

the AoAs of the signal sources for the first array configuration are

{ϕn : 1 ≤ n ≤ N }. For the second array that is tilted by an angle Ω
in the clockwise direction, the AoAs are now {ϕn +Ω : 1 ≤ n ≤ N }
and the reference source has an angle of arrival Ω or equivalently,

ψ
ref
= cos(Ω).

Since cosine is not a linear function of its argument, utilizing

two sets of array measurements results in different sets of pairwise

distances Q and Q ′. Therefore, we can obtain the set of all possible

angle solutions individually for Q and Q ′ (using Algorithm 1), and

then take the intersection of the two sets to find the common valid

solution(s). More specifically, let Φ
all,1

and Φ
all,2

indicate the AoA

solution sets for Q and Q ′ respectively. The intersection of the

two sets Φ
all,1

and Φ
all,2
− {Ω} is then our final estimated AoAs.

3

Intuitively, the chance that the two routes have more than one

possible common set is considerably small. However, it is challeng-

ing to theoretically prove the uniqueness, or derive the conditions

3
Note that in practice, the angles from the two sets Φall,1 and Φall,2 (after subtracting

Ω from Φall,2) may never be equal, owing to noise or rounding errors. Therefore, we

need to compare the sets within a tolerance level.
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for the uniqueness of the final solution set. Thus, we leave any

such proof to future work. However, we have observed through

extensive simulations for up to 8 signal sources that our algorithm

results in a unique solution for the AoA estimation problem. Fur-

thermore, if there is more than one solution set in the common set,

we can collect measurements along another array route to obtain

a unique solution. This online strategy is in particular suitable for

the case of an unmanned vehicle emulating an array. We note that

our proposed strategy is computationally very efficient. We report

on sample times in the next section. We next discuss some aspects

of the proposed approach.

Criteria for Choosing Ω: The orientation of the second array,

Ω, determines the extent of dissimilarity between the sets Q and

Q ′, where a larger Ω is likely to result in a higher dissimilarity.

Therefore, it is preferable to use as large an Ω as possible. However,

we require all the sources in the area to lie on one side of the

receiver array (i.e., upper half plane) in the second configuration as

well. Therefore, we can use the first set of distances Q , to estimate

the largest AoA at the first receiver array as ϕmax = cos
−1(1 − q1).

This implies that the possible range of values for Ω is 0 < Ω <
180
◦ − ϕmax. Note that if ϕ

ref
for the first route was ϕmin > 0

instead of 0, where ϕmin is smaller than all source angles, then

the condition for Ω becomes −ϕmin < Ω < 180
◦ − ϕmax, where

ϕmax = cos
−1(cos(ϕmin) − q1).

Choice of Number of Sources: Given a set of unique distances Q
and Q ′, we are interested in estimating the AoAs corresponding to

the smallest number of sources that can result in the two sets of

distances. ForN sources, the maximum number of possible pairwise

distances is

(N
2

)
. Suppose that the cardinality of sets Q and Q ′ are

M andM ′. Therefore, the estimated number of sources N̂ should

satisfyM ≤
(N̂
2

)
andM ′ ≤

(N̂
2

)
, which translate to the conditions:

N̂ ≥ 1+
√
1+8M
2

and N̂ ≥ 1+
√
1+8M ′
2

. Hence, we set N̂min as the

smallest integer satisfying the previous two inequalities.

We start by assuming that we have N̂ = N̂min sources. We then

solve for the AoAs for the sets Q and Q ′ separately, using the

approach of Sec. 3.1 (Algorithm 1). If the intersection of Φ
all,1

and

Φ
all,2
− {Ω} is an empty set, we then need to increase N̂ by 1, until

we get a non-empty intersection set of solutions.

Remark 3. It is highly unlikely that adding an element ψnew to
the true set Ψ or taking out one element of it will produce the same Q
and Q ′ respectively for both the routes. Hence, it is highly unlikely
that using any N̂ other than the true N will produce non-empty
intersection set of solutions.

Remark 4. For the case where we are interested in finding all the
valid solutions with only one measurement array, N̂ can be chosen

as N̂min =
⌈
1+
√
1+8M
2

⌉
, which corresponds to the smallest number of

sources that could have resulted in a cardinality of M for Q . If the
current N̂ does not result in a valid solution, we then keep increasing
N̂ by 1 until we get a non-empty solution set.

3.1.3 Solution for the Special Case of Dominant Reference Source.
Consider the case that the signals from the unknown signal sources

are of lower transmission power as compared to the reference

φ
1

φ
2

Ω
Reference source

Unknown active 

or passive object

Unknown active 

or passive object

Route 1

Route 2

Figure 3: Framework for AoA estimation using two routes. Re-
ceived signal magnitude measurements are collected along two ar-
rays in order to reduce the ambiguity due tomultiple sets of possible
solutions to the AoA estimation problem.

source at ϕ
ref
. This case is in particular relevant when we are inter-

ested in estimating the direction of passive objects. Then, the trans-
mitted reference signal will bounce off of these objects and reach

the receiver array with a considerably smaller power than that of

the path from our reference transmitting source. In such a case, the

AoA estimation problem is easier to solve, as we show next.

Consider N − 1 unknown sources where the paths arriving from

them at the receiver array have a lower power as compared to the

reference source. This can happen for both the cases of active and

passive sources. In the active case, this can happen when the active

transmitters have a lower power as compared to our reference

source. On the other hand, the passive case results in a dominant

reference source almost all the time. Then, from Eq. 3, we can see

that the pairwise coefficientsCm,n that correspond to the reference

source and an unknown source would be the only significant peaks

in the spectrum. More specifically, if the dominant reference source

with a higher power is at 0
◦
, and the unknown sources are at angles

{ϕ1, . . . ,ϕN−1}, then the estimated differences from the spectrum

areQ = {1−cos(ϕ1), . . . , 1−cos(ϕN−1)} since the rest of differences
will have negligible peaks. Therefore, we can directly estimate the

AoAs corresponding to the unknown sources as {cos−1(1−q) : q ∈
Q}.

We next experimentally validate our proposed framework with

several experiments for estimating the AoAs of both the active and

passive signal sources.

3.2 Experimental Results for the Case of Fixed
Sources/Objects

In this section, we present our experimental results and show the

performance of our proposed framework for estimating the AoA in

three scenarios: (a) fixed active (transmitting) sources, (b) fixed ac-

tive sources with a dominant reference source, and (c) fixed passive

objects. In the experiments, we use a TP-Link AC1750 WiFi router

as a transmitter. The router operates in the 5 GHz band. The output

signal of the router is split into N branches using a power divider, in

order to create N signal sources for the fixed active source scenario.

We use a laptop with Intel 5300 NICWLAN card as the receiver. The

laptop measures the magnitude of the WiFi Channel State Informa-

tion (CSI) using Csitool [10].
4
The laptop is mounted on a Pioneer

4
Note that the CSI magnitude captures the channel gain, which can be used as an

alternative to the received signal magnitude, without affecting our framework.
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(a)

(c)(b)

Unknown sources

Robot

Ref. source

Unknown sources Unknown sources

Ref. source Ref. source

Robot

Robot

Figure 4: Experimental setup for the problem of AoA estimation
of active sources in various areas on campus: (a) a closed area in a
parking structure, and (b) and (c) open areas.

3-AT mobile robot [11], and the robot moves along a linear route.

The motion of the robot enables signal measurements at several

locations along the route, thus emulating an antenna array. We

utilize a spatial sampling frequency of 10 samples/cm, which is well

above the Nyquist sampling rate. It should be noted that while the

Intel 5300 card is capable of reporting a measurement for the phase

of the signal, the phase measurement at different robot positions

can not be properly related to each other due to frequency drift and

other sources of random errors [33].

3.2.1 AoA Estimation of Active Sources. In this section, we present
our experimental results for the AoA estimation of signals arriving

from multiple active sources (transmitters) in both closed and open

areas. Consider the closed area shown in Fig. 4 (a). One reference

source is located at an angle ϕ
ref
= 0
◦
and 2 unknown sources are

located such that their true AoAs are 90
◦
and 120

◦
. The robot then

collects measurements along two routes of length 1 m each, with

the orientations of the routes corresponding to Ω = 0
◦
and Ω = 25

◦
.

Fig. 5 then shows the normalized spectra of the auto-correlation

functions |A(f )| across the arrays, for both routes of the robot. It

can be seen that the second array configuration results in a differ-

ent set of distances. We identify the peaks as those points with a

minimum prominence value of 10% of the maximum peak (a point

is a peak if it is higher than its neighbors by 10% of the max peak

value). Then, using our proposed framework of Sec. 3.1, we obtain

a unique final solution as {0, 90.43, 117.57}, resulting in a Mean

Absolute Error (MAE) of 1.43◦.
Additionally, we performed several other experiments in the

open and closed areas of Fig. 4 (a-c) . Table 1 (top) summarizes the

results of 4 different experiments carried out in these locations. We

can see that our proposed framework can estimate the AoAs of

multiple sources accurately, with an overall MAE of 1.3◦.

3.2.2 AoA Estimation of Active Sources with a Dominant Refer-
ence Source. In the previous results, no assumptions were made

regarding the power level of the active sources as compared to the

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Route 1 (  = 0° )

Route 2 (  = 25°)

Figure 5: The normalized spectra of the auto-correlation of the
magnitude measurements obtained for both routes of the robot, for
the active-source AoA estimation experiment of the closed area of
Fig. 4 (a). Dashed lines represent the true theoretical peak locations.

True AoAs Estimated AoAs

{66.42, 120} {67.74, 120.22}

(Top) Two
arrays

{66.42, 120} {66.14, 120.29}

{66.42, 120, 143.13} {65.99, 117.4, 140.72}

{90, 120} {90.43, 117.57}

MAE 1.3◦

{66.42, 120} {68.18, 121.27}

(Bottom)

Dominant
reference
source &
one array

{66.42, 120} {64.88, 117.7}

{66.42, 120, 143.13} {64.59, 117.3, 140.9}

{66.42, 120, 143.13} {68.15, 121.1, 146.2}

{66.42, 120, 143.13} {61.52, 117.7, 146.2}

MAE 2.79◦

Table 1: Summary of the experimental results for AoA estimation
of active sources – (top) solved with proposed approach of Sec. 3.1.2
with two robotic arrays, and (bottom) solved with the proposed
approach of Sec. 3.1.3, with a dominant reference source and one
robotic array.

reference source. Instead, two robotic routes were used to uniquely

find the AoAs. As we proposed in Sec. 3.1.3, if the reference source

is non-negligibly stronger than the unknown active sources, we can

then solve for the unknown sources with only one robotic route

and with a simpler approach. We next experimentally validate this

case. A dominant reference source with a high power is located at

an angle ϕ
ref
= 0
◦
. For the dominant reference source, we use an

antenna with a 12 dB higher gain than the antennas of the other

unknown sources. Table 1 (bottom) then summarizes our results

using our proposed approach of Sec. 3.1.3, for experiments in the

three areas shown in Fig. 4. We can see that our proposed frame-

work accurately estimates the AoA in this case as well, with an

MAE of 2.79◦.

3.2.3 AoA Estimation of Passive Objects. We next present our

experimental results for the AoA estimation of passive objects. AoA

estimation then refers to estimating the direction of these objects

with respect to the antenna array. Consider the scenario shown

in Fig. 6 (c), for instance. Our reference source is located at an

angle of ϕ
ref
= 0
◦
and two humans are standing at angles ϕ1 = 90

◦

and ϕ2 = 110
◦
. Since the reference source will be dominant in the

passive case, we can use the framework of Sec. 3.1.3, and directly

estimate the AoA, using one robotic array, and from the spectrum
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(a)

(b) (c)

Passive objects

Robot
Ref. source

Passive objects

Robot Ref. source Ref. sourceRobot

Humans

Figure 6: Experimental setup for the AoA estimation (estimation
of the direction) of passive sources in various areas on our campus:
(a)–(b) passive objects, and (c) humans.
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0.4
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1

Figure 7: A sample normalized spectrum of the auto-correlation of
magnitudemeasurements for the passive case of two humans in the
area of Fig. 6 (c), using only one robotic array. Dashed lines repre-
sent the true AoAs.

True AoAs Estimated AoAs

{90, 120} {92.38, 124.2}
2 objects{90, 110} {89.14, 111.4}

{45, 90} {42.18, 80.14}

{45, 69, 90} {46.68, 64.88, 86.66}

}
3 objects

{90, 110} {89.14, 111.4}

}
2 humans

MAE 2.99◦

Table 2: Summary of the AoA experimental results (angular local-
ization) for the case of passive objects/humans, using one robotic
array.

shown in Fig. 7. As can be seen, the peaks in the spectrum are

located at angles 89.14◦ and 111.4◦, which are very close to the

true angles, resulting in an MAE of 1.13◦. Table 2 summarizes the

results of 5 different experiments for passive objects, carried out in

the three locations shown in Fig. 6. The overall MAE is 2.99◦ over
all the passive experiments, indicating a very good accuracy.

3.2.4 Performance with Additional Phase Information. We next

compare the performance of our magnitude-only approach with

the case where phase can be additionally measured in the receiver.

More specifically, we performed a set of 5 active-source experi-

ments using USRP N210 Software Defined Radio (SDR) platforms

[20], thus measuring both the received signal magnitude and phase.

We then estimated the AoAs of signals arriving from the active

sources by using the additional phase information and traditional

beamforming. The resulting MAE of AoA estimation when addi-

tional phase information was available was 0.93◦. On the other

hand, the corresponding MAE, using our proposed AoA estimation

framework and with only magnitude measurements, was 1.76◦.
This shows that our proposed approach that uses only signal mag-

nitude has a performance comparable to the case where additional

phase information is available.

Overall, our proposed framework can accurately estimate the

AoA of fixed active sources as well as passive objects, using only

magnitude of the received signal measurements. Our approach is
also computationally efficient. For instance, it took an average of

0.45 seconds (averaged over all the 14 presented results) to find the

final solution in MATLAB.

Next, we show how our AoA estimation framework can be

adapted to track a moving target (both active and passive).

4 TRACKING A MOVING TARGET
In this section, we show how our proposed magnitude-only AoA

estimation approach can be deployed to track a moving active or

passive target, using only the magnitude of the received signal at a

small number of receivers. By an active moving target, we mean a

moving transmitter, such as amoving vehicle that emits a signal as it

moves. A passive target, on the other hand, refers to a moving object

that has no transmitter on board, such as a moving human or robot

that does not emit any signal. We first show the duality between the

target tracking problem and the previous AoA estimation problem

of fixed sources. Then, we show that using the aforementioned

methodology, in conjunction with motion dynamics, can localize

and track a moving target. We start by discussing the active target

tracking scenario.

Active Target Tracking: Consider the scenario shown in Fig.

8 (a), where a known fixed receiver (Rx) receives wireless signals

from a known fixed transmitter (Tx
fix
) and an unknown moving

active transmitter (Txmov). Txmov moves with a constant speed, v ,
along a line that makes an angle θ◦ with the x-axis, and an angle

ϕr with the line connecting Txmov and Rx, as shown in the figure.

The total baseband received signal at the receiver at time t , c(t),
will then be,

c(t) = α1e jµ1 + α2e j(µ2−
2π
λ vψr t) + η(t), (4)

where α1,α2 are the amplitudes of the paths from Tx
fix

and Txmov,

respectively. Parameter µ1 is the phase of the signal arriving from

Tx
fix
, µ2 is the phase of the signal from Txmov when the moving

target is at its initial position (t = 0), v is the speed of Txmov, and

ψr = cos(ϕr ). By comparing Eq. 4 and Eq. 1, we can see the equiva-

lence between the two equations, where Eq. 4 can be considered

a special case of Eq. 1 with N = 2 sources, ψ1 = 0 and ψ2 = ψr .
Basically, the magnitude-only tracking problem can be considered

as the dual of our previous AoA estimation problem, where the

moving transmitter Txmov synthesizes a transmit array, and the
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Figure 8: The setup for tracking a moving (a) active target, and (b)
passive target, with only magnitude measurements at the receiver.

quantity ψr relates to the angle of departure instead of the AoA.

Therefore, we can use our framework of Sec. 2 to estimate |ψr |.
Remark 5. Note that if there are unknown fixed transmitters in

the area, they will not affect the tracking quality. This is due to the
fact that any fixed transmitter will result in a constant term (such
as the first term in Eq. 4) withψ = 0. Thus, the non-DC peaks of the
spectrum will only correspond toψr . This is in particular attractive
as the signal may bounce of other fixed objects in the area, creating
several paths to the receiver.

Passive Target Tracking: Consider the case where we are in-
terested in tracking an unknown moving target that is passive, i.e.

the target does not have a signal source onboard, but reflects the

incident signal from Tx
fix
, as shown in Fig. 8 (b). The received signal

at Rx can then be written as follows:

c(t) = α1e jµ1 + γα2α3e j(µ2−
2π
λ vψr t ) + η(t), (5)

where the first term is the same as the first term in Eq. 4, γ is the

reflection coefficient from the moving target, µ2 is the phase of

the reflected path when the target is at its initial position (t =
0), and ψr = cos(ϕr ) + cos(ϕT ). Similar to the active case, the

duality between Eq. 5 and Eq. 1 can be seen. Thus, we can use our

framework of Sec. 2 to estimate |ψr |, which, in this case, is equal to

| cos(ϕr ) + cos(ϕT )|.
Resolving theTrackingAmbiguity: In general, ourmagnitude-

based tracking problem is easier than our previous AoA estima-

tion of fixed sources since there is only one angle to be estimated

per moving target, and the impact of all non-moving transmit-

ters/objects will not be seen in the power spectrum. However, there

are still ambiguities if only one receiver is used, as we shall explain

next. Our tracking problem consists of estimating the location and

bearing of Txmov at each time instant t . However, using |ψr | as the
only piece of information would result in ambiguities when solving

such a problem. For instance, consider the problem of using one

receiver to estimate the bearing of the active target, as shown in Fig.

9 (a). The target has a velocity vector v(1)
1
. It moves in a direction

that makes an angle ϕr1 with the line connecting the target and the

receiver Rx1. This results in |ψr1 | = | cos(ϕr1 )| at the receiver Rx1.
Then, as shown in Fig. 9 (a), four different velocity vectors (±v(1)

1

and ±v(2)
1
) can result in the same measurement. Thus, Rx1 cannot

uniquely estimate the true bearing of the moving target. In addition,

the starting point of the target can be any point in the workspace,

Rx1

φ
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φ
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Figure 9: An example of bearing estimation ambiguity for active
tracking – (a) Using one Rx, four different velocity vectors (±v(1)

1

and ±v(2)
1
) result in the same measurement of | cos(ϕr1 ) | at Rx1. (b)

Using two Rx, only two velocity vectors (±v(1)
1
) result in measuring

| cos(ϕr1 ) | and | cos(ϕr2 ) | at Rx1 and Rx2 simultaneously.

adding more ambiguity to the solution. To solve the bearing ambi-

guity, we can add more receivers. For instance, by adding one more

receiver, we can see that two of those four solutions of Fig. 9 (a)

will become invalid, as shown in Fig. 9 (b). However, there will still

be the ambiguity between the actual velocity vector and the one

pointing to the opposite direction. Adding more receivers will not

resolve this specific type of ambiguity. It is easy to confirm that the

passive case will also have ambiguities.

Since the main goal of this section is to track a moving target

(active or passive), including its location and bearing, we use a

small number of receivers to reduce the aforementioned bearing

ambiguity. We furthermore utilize a non-linear dynamical system

to represent the motion dynamics of the target. This dynamical

system modeling, in conjunction with the receiver measurements,

will then remove the remaining ambiguity of the bearing, as well

as the location ambiguity, as we shall see next.

4.1 Nonlinear Dynamical System Modeling
Consider the scenario where there are a total of R receivers located

at (xri ,yri ), 1 ≤ i ≤ R, a fixed transmitter Tx
fix

located at (xT ,yT ),
and a moving target Txmov located at (x◦(t),y◦(t)) at time t . The
state of the target at time t is defined as the 3-dimensional vector

xt = [x◦(t),y◦(t),θ◦(t)]T , where θ◦(t) is the bearing of Txmov at

time t , and [.]T is the transposition operator. A measurement pro-

cess Ψt is an R-dimensional vector of measurements from all the

receivers: Ψt = [| ˆψr1 (t)|, | ˆψr2 (t)|, . . . , | ˆψrR (t)|]T , where | ˆψri (t)| is
the measurement obtained at the ith receiver at time t . In case of an

active target, this measurement is related to the state of the target

as follows:

| ˆψri (t , xt )| =����� (xri − x◦(t)) cos (θ◦(t)) + (
yri − y◦(t)

)
sin (θ◦(t))√

(xri − x◦(t))2 + (yri − y◦(t))2

����� +wri (t),
(6)

wherewri (t) is the Gaussian measurement noise at receiver ri , with
variance σ 2wr

. On the other hand, in the case of passive target, Ψt
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is related to the state of the target as,

| ˆψri (t , xt )| =
����� (xri − x◦(t)) cos (θ◦(t)) + (

yri − y◦(t)
)
sin (θ◦(t))√

(xri − x◦(t))2 + (yri − y◦(t))2
+

(xT − x◦(t)) cos (θ◦(t)) + (yT − y◦(t)) sin (θ◦(t))√
(xT − x◦(t))2 + (yT − y◦(t))2

����� +wri (t).

(7)

For the dynamics of xt , we adopt a simple constant-speed motion

model, xt+1 = д(xt ), as follows:
x◦(t + 1) = x◦(t) +v cos(θ◦(t)) +wx◦ (t + 1),
y◦(t + 1) = y◦(t) +v sin(θ◦(t)) +wy◦ (t + 1),

θ◦(t + 1) = wθ◦ (t + 1) +
{
θ◦(t) w.p. Pc

∼ U(0, 2π ) w.p. 1 − Pc ,
(8)

where wx◦ ,wy◦ ,wθ◦ are the noise processes for the three compo-

nents of the target state x◦, y◦, and θ◦, respectively, and Pc is the
probability of the target maintaining the same bearing as the previ-

ous time instant. Eq. 8 along with Eq. 6, or Eq. 7, then defines the

nonlinear dynamical system of the tracking problem.

To estimate the state of the moving target, we compute the con-

ditional probability of the target having a state xt given all the

measurements up to time t , p(xt |Ψ1:t ). In the filtering literature,

this probability is referred to as the filtering Probability Density Func-
tion (PDF). Then, we use the mean of this PDF, E{xt |Ψ1:t }, as the
estimate for the target state at time t . Since the dynamical system is

nonlinear, we utilize particle filtering to compute the filtering PDF

[25]. We next briefly discuss the particle filtering algorithm. In a Par-

ticle Filter (PF), a probability distribution is represented by a set of

random samples, called particles, drawn from that distribution. Such

a representation is desirable because it can easily model nonlinear

transformations of random variables, which makes it particularly

suitable for the problem at hand. The basic idea of a PF is that, at

each time instant, samples (or particles) are drawn from a proposal

distribution x[i]t ∼ ζt (xt ), i = 1, . . . , I , where I is the total number

of particles. Those particles are then given importance weights,w[i]t ,

that describe how well they fit the current measurement Ψt . That

set of weighted particles represent the filtering PDF p(xt |Ψ1:t ) at
time t . Afterwards, a resampling step is performed. This step is

crucial in order to neglect particles with very low weights (very

low probability of producing the current measurement) and focus

more on particles with high weights. Specifically, a new set of I

particles are drawn from the distribution defined byw
[i]
t over the

values of x[i]t . The readers are referred to [25] and [27] for more on

PF.

The PF for our framework is described in Algorithm 2. In step 2,

we draw the particles of the initial state from an initial distribution

ζ1(x1), which can depend on any prior information we may have

about the initial state of the target (or is taken to be uniform when

no prior information is available). Then, step 3 calculates the im-

portance weight of each particle as the probability of getting the

measurement Ψ1, given that the state of the target is this particle.

This probability can be easily calculated using the measurement

model in Eq. 6 or 7 (depending on whether an active or passive

target is being tracked). Step 6 is the resampling step, which is

important for discarding low weight particles, as mentioned be-

fore. Step 7 is where the motion dynamics are enforced into the

tracking problem. The resampled particles are evolved according

to the motion model in Eq. 8. This is a very simple and intuitive

way of producing the proposal density of particles of the next time

instant. After the tracking period T is over, the estimated track of

the object E{xt |Ψ1:t } |t=1:T is smoothed by passing it through a

spatial moving average filter.

Algorithm 2 Particle filter for motion tracking

Input: Total tracking timeT , Number of particles I , Measurements

Ψ1:T
Output: Estimate of the target states x̂1:T .
1: Initialize t = 1

2: Sample x[i]
1
∼ ζ1(x1) for i = 1, 2, . . . , I

3: Compute the importance weights w̃
[i]
1
= p(Ψ1 |x1 = x[i]

1
) and

normalizew
[i]
1
=

w̃ [i ]
1∑I

i=1 w̃[i ]
1

4: Estimate the initial target state x̂1 = E{x1 |Ψ1} =
∑I
i=1w

[i]
1

x[i]
1

5: for 2 ≤ t ≤ T do
6: Sample x̃[i]t−1, for i = 1, . . . , I , from the distribution defined

by p(x̃t−1 = x[i]t−1) = w
[i]
t−1.

7: Sample x[i]t ∼ д(x̃
[i]
t−1)

8: Compute the importance weights w̃
[i]
t = p(Ψt |xt = x[i]t )

and normalizew
[i]
t =

w̃ [i ]t∑I
i=1 w̃[i ]t

9: Estimate the target state x̂t =
∑I
i=1w

[i]
t x[i]t

10: end for

4.2 Tracking Experimental Results
In this section, we present experimental results for our proposed

framework for target tracking, using only the received signal mag-

nitude at the receiver. We use a similar setup to the one in Sec. 3.2,

for transmission and reception, with three laptops as receivers. The

router operates in the WiFi 5GHz band. All laptops are equipped

with Intel 5300 NIC WLAN card and use Csitool to measure the

WiFi CSI [10]. Since the target is moving and can change its direc-

tion anytime, we use the framework of Sec. 2 on a moving time

window, Twin, of the CSI magnitude time series. More specifically,

for each window, we extract |ψr | from the location of the peak of

the spectrum of the received signal magnitude auto-correlation

within this window. These measurements are then aggregated and

processed offline to estimate the track of the target (see Remark 6 on

online tracking). Note that the receivers are not time-synchronized

and operate independently, where each receiver logs CSI from pack-

ets that are broadcast on the network. We achieve this by using

iPerf tool [12] to broadcast packets from the transmitter. We next

discuss practical considerations that arise in the experiments before

presenting our results.

4.2.1 Practical Considerations.

• Window Length: As a compromise between having a larger Twin
for better frequency resolution (i.e., longer array length), and a
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Figure 10: (a) (left) A robot with an active transmitter Txmov is being tracked by 3 receivers in an open area, and (a) (right) an accurate
reconstruction of the tracking route using our proposed framework. (b) (left) A robot with an active transmitter is being tracked by three
receivers in a closed area, and (b) (right) an accurate reconstruction of the tracking route using our proposed framework.

smallerTwin for shorter distance traveled by the target (resulting

in a better piece-wise linear approximation of the route), we set

Twin = 1/v corresponding to 1 m of distance moved by the object.

• Subcarrier Selection: The spectrum of each window should the-

oretically include one Dirac delta function whose frequency is

|ψr |. However, transmission in some subcarriers may be less in-

formative due to more noise and interference. Therefore, we use

the variance of the power distribution in the frequency spectrum

(after DC removal), as an indication of the clarity of the subcarrier

data, for each time window. The subcarrier with the minimum

average variance across all time windows is chosen for extracting

|ψr |.
• Frequency Resolution: Since a receiver calculates the spectrum

using only a windowed time signal, the frequency bins of the FFT

spectrum in Eq. 3 are spaced λ/(vTwin) apart, and the peak of the
spectrum will be detected at the bin closest to the true peak. This

adds a quantization effect to the time series of the measured | ˆψr |.
Therefore, we first pass the measured | ˆψr (t)| through a moving

average filter of length Twin to reduce the quantization effect,

prior to using it in the PF. It should be noted that sudden rapid

changes in the time series of | ˆψr | at more than one receiver at

the same time, could be an indication of motion direction change.

When such a change is detected, the moving average filters are

re-initialized so that different segments of the route are filtered

separately.

• PF Parameters: We set the parameters of the PF as follows: I =
8000, Pc = 0.9,σwr = 0.1, σwxo = σwyo = 1 cm, and σwθo

= 1
◦
.

The values of the noise variances were estimated by measuring

the errors in the robot motion and in the |ψr | measurements of

prior experiments (not in the same area), and fitting Gaussian

distributions to the respective measurement errors. After the PF,

the moving average filter has a spatial width of 0.5 m.

4.2.2 Tracking an Active Moving Target. In this section, we show

experimental results for tracking an active moving transmitter in

both a closed and an open area. For the open area, consider the

setup shown in Fig. 10 (a) (left), where three receivers are located

at the corners of an 8 m × 8 m area, and are tasked with tracking

a moving robot with an active transmitter. The robot moves in

an L-shaped route with a constant speed of v = 0.1 m/s. The PF

was initialized with particles uniformly distributed in a 4 m × 4 m

Rx1
Rx2

Rx3

Tx
mov

Tx
fix

Rx1Rx2Rx3

Tx
mov

Tx
fix

Figure 11: Passive robot tracking experimental setup in (left) a
closed area and (right) an open area.

square area in the upper right quadrant of the area. Fig. 10 (a) (right)

shows the tracking result of this case, which demonstrates a highly

accurate reconstruction of the robot path, with a tracking mean

absolute error (MAE) of 11.3 cm. For the closed area shown in Fig. 10

(b) (left), the same setting is used inside a room to track an active

transmitter robot that moves in a U-shaped route in a 7 m × 7 m

area. It can be seen from the tracking result of Fig. 10 (b) (right)

that our framework tracks the robot accurately indoors, with an

MAE of 30.6 cm.

4.2.3 Tracking a Passive Moving Target. We next show how our

approach can track passive moving targets. We consider two scenar-

ios: (a) tracking a passive moving object, and (b) tracking a walking

human. For the passive moving object, we track a non-transmitting

robot that moves in both an 8 m × 8 m open area and an 8 m × 8 m

closed area, as shown in Fig. 11. The routes of the robot are designed

such that they spell the letters of the word IPSN, with the letters I

and P in the closed area, and the letters S and N in the open area. In

all the experiments, we initialize the PF uniformly over a 4m × 4m
area around the area that the robot starts. Fig. 12 shows the results

of the tracking experiments. It can be seen that we can track the

passive robot well in all the cases, with an MAE of 23.27 cm. It

should be noted that the dimensions of the robot are 50 cm × 40 cm,

and the signal might bounce off of any part of the robot’s outer

frame. This is in contrary to the active tracking case where the

location of the transmitter is clear. Thus, we calculate the error in

this case as the minimum distance between the estimated position

and the robot frame at each time step.

For the human tracking experiment, a person was asked to walk

in an 8 m × 8 m area as shown in Fig. 13 (left). Since the average
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Figure 12: Passive robot tracking results for a robot that writes the letters of IPSN on its route, in the two areas of Fig. 11. The letters I and P
were tracked in the closed area of Fig. 11 (left), while the letters S and N were tracked in the open area of Fig. 11 (right).
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Figure 13: (left) The experimental setup for the passive human
tracking scenario and (right) the estimated route of the human us-
ing our proposed framework.

human speed (assumed to be 0.8 m/s) is higher than the robot

speed, we use a laptop for the fixed transmitter, instead of a router,

in order to have a higher sampling rate. Since the human body

is not a strong reflector, we use the 2.4 GHz band for the human

experiments in order to have a smaller path loss attenuation. Fig. 13

(right) shows the human tracking result. It can be seen that our

proposed framework accurately tracks the person’s complicated

route, with anMAE of 30.26 cm. Similar to the passive robot tracking

case, we do not know the exact location where the signal might

have bounced off of the human body. Thus, by assuming the human

to be a cylinder of radius 20 cm, we calculate the error as the

minimum distance between the estimated position and the edge of

the cylinder at each time step.

Fig. 14 shows the Cumulative Distribution Function (CDF) curves

of the absolute tracking estimation error, for both the active and

passive cases. It can be seen that our proposed framework achieves

a good tracking quality, with only WiFi magnitude measurements

at 3 receivers (i.e., 3 links).

Our proposed framework of tracking using a PF is very efficient

and of very low computational complexity. More specifically, the

average run-time per 1 m of tracking length is 1.05 sec, over all

the experiments. This is in contrast to the state-of-the-art tracking

systems [17, 22], which use 6 links to achieve comparable tracking

accuracy (38 cm MAE in [22] and 35 cm median error in [17]), and

where high computational complexity has been reported.

Remark 6 (on Data Aggregation Latency). For a real-time
implementation, a central processor needs to aggregate measurements
from the 3 receivers, in order to process them and track the moving
target online. According to the state-of-the-art [2], such a process
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Active robot tracking
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Figure 14: CDFs of the tracking error of our framework for ac-
tive transmitter tracking, passive robot tracking and passive human
tracking. Our proposed framework achieves a decimeter-level accu-
racy for all the different scenarios.

takes about 9 ms to aggregate the data of the three receivers. Thus,
the required time for the data aggregation is less than the required
channel sampling time at the receivers ( λ

4v ), allowing the central
processor to aggregate the data from all the receivers before the next
channel sampling instant. Hence, the data aggregation process does
not add any latency to the system.

5 LIMITATIONS AND FUTURE EXTENSIONS
In this paper, we have proposed an approach that has enabled AoA

estimation and target tracking using only the magnitude of the

wireless signals, which is an extremely challenging problem. Here

are some possible directions to further extend this work:

• Validation in more complex environments: In this paper,

we validated our framework with several experiments in Line-of

sight (LOS) settings, in both open and closed areas. However,

more complex spaces can result in a non line-of-sight (NLOS) op-

eration, to which our framework is extendable. A more detailed

analysis and testing of the proposed methods in through-wall set-

tings is part of our future work. As for multipath, more complex

environments can also experience a high level of multipath. As

mentioned in Remark 5, and showcased by our results in closed

spaces, multipath does not affect our tracking framework. As

part of our future work, we plan to test our framework in more

indoor spaces that can experience a high level of multipath.

• Multiple target tracking: Our proposed tracking framework

has enabled tracking of a single moving target, even in the pres-

ence of other static targets in the area. For the case of multiple

moving targets, more than one peak will appear in the frequency
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spectrum. As part of our future work, we can extend the tracking

framework to simultaneously track a number of moving targets.

6 CONCLUSIONS
In this paper, we have considered the problem of estimating the

angle of arrival (AoA) of all signal paths arriving at a receiver

array using only the received signal magnitude measurements. We

have proposed a computationally-efficient framework, based on

the auto-correlation of the magnitude measurements, to solve the

AoA estimation problem. We have experimentally validated our

AoA estimation framework in closed and open areas, and showed a

mean absolute error of 2.12◦ for the active source case, and 2.99◦ for
passive objects. Furthermore, we have adapted themagnitude-based

AoA estimation approach to track an active/passive moving target.

Our tracking framework was experimentally validated in various

closed and open areas, with only three receivers, and showed good

tracking accuracy, with an overall MAE of 20 cm for active target

tracking, 23.27 cm for passive robot tracking, and 30.62 cm for

passive human tracking.
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A MAGNITUDE AUTO-CORRELATION
Let cI (d) and cQ (d) be the real and imaginary parts of c(d). The
auto-correlation function of cI (d) can be written as

AI (∆) = E{cI (d)cI (d + ∆)} =
N∑
n=1

α2n
2

cos

(
2π

∆

λ
ψn

)
+
1

2

σ 2ηδ (∆),

whereψn = cos(ϕn ), σ 2η is the variance of noise, and δ (.) is the Dirac
delta function. In a similar fashion, the cross-correlation between

cI (d) and cQ (d) can be written as

AI,Q (∆) = E{cI (d)cQ (d + ∆)} =
N∑
n=1

α2n
2

sin

(
2π

∆

λ
ψn

)
.

Define ρ2(∆) = 1

P 2

(
A2

I (∆) +A
2

I,Q (∆)
)
, where P is the total received

power, then [13]

Acorr(∆) =
πP

2

(
1 +

ρ2(∆)
4

+
ρ4(∆)
64

+ . . .

)
≈ πP

2

(
1 +

ρ2(∆)
4

)
=
π

2

P +
π

8P

(
AI (∆) + jAI,Q (∆)

) (
AI (∆) − jAI,Q (∆)

)
= CA +Cσηδ (∆)

+
π

16P

N∑
n=1

∑
m>n

α2nα
2

mcos

(
2π

∆

λ
(ψn −ψm )

)
.
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